Contractions of Low-Dimensional Lie Algebras

نویسنده

  • Maryna NESTERENKO
چکیده

Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semiinvariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for both the complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and colevels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations and contractions of Lie algebras

We discuss the mutually opposite procedures of deformations and contractions of Lie algebras. Our main purpose is to illustrate the fact that, with appropriate combinations of both procedures, we obtain new Lie algebras. Firstly, we discuss low-dimensional Lie algebras, and these simple examples illustrate that, whereas for every contraction there exists a reverse deformation, the converse is n...

متن کامل

On Deformations and Contractions of Lie Algebras

In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is ...

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006